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Abstract

A three-dimensional inverse geometry problem (shape identification problem) in determining the unknown irregular surface configurations by
utilizing the conjugate gradient method (CGM) and a general purpose commercial code CFD-RC is successfully developed and examined in this
study based on the simulated measured temperature distributions on the bottom surface by infrared thermography. Results obtained by using the
technique of CGM to solve the inverse geometry problem are justified based on the numerical experiments. Three test cases are performed to test
the validity of the present algorithm by using different types of surface shapes, initial guess and measurement errors. Results show that excellent
estimations on the unknown surface geometry can be obtained with any arbitrary initial guesses.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The applications of Inverse Heat Conduction Problems
(IHCP) can be found in several engineering fields in estimat-
ing thermal quantities, such as the determination of unknown
heat fluxes [1], thermal properties [2] and heat sources [3], etc.,
when the geometry of the physical problems under considera-
tion are known. However, when the geometry of the problems is
subjected to change and unknown, the technique of Inverse Ge-
ometry Problem (IGP) should be used to estimate the position
varying domain configurations. Recently, thermal imaging, the
application of Inverse Geometry Problem, has become another
area of active inverse problem research, and much research has
been devoted to infrared scanners and their applications to non-
destructive evaluation (NDE) [4] and shape identifications [5].
The approaches taken to solve NDE or shape identification
problems are based on either steady or unsteady state response
of a body subjected to thermal sources.

For the inverse geometry problem, due to its inherent nature,
it requires a complete regeneration of the mesh as the geome-
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try evolves. Moreover, the continuous evolution of the geometry
itself poses certain difficulties in arriving at analytical or numer-
ical solutions. For this reason it is necessary to use an efficient
technique that can handle the problems with irregular surface
geometry, especially in 3-D applications.

The inverse geometry problems, including the cavity or
shape estimation, have been solved by a variety of numerical
methods [6–10]. Huang and his co-workers have utilized the
conjugate gradient method (CGM) and boundary element tech-
nique to the inverse geometry problems and have published a
series of relevant papers. Huang and Chao [11] first derived
the formulations for determining the unknown irregular bound-
ary configurations for a 2-D steady-state shape identification
problem with CGM. Based on the algorithm developed in [11],
Huang and Tsai [12] extended the algorithm to a transient in-
verse geometry problem in identifying the unknown irregular
boundary configurations from external measurements. Huang
et al. [13] have developed a new algorithm for two-dimensional
multiple cavities estimations where the search directions are
not confined, i.e. the unknown parameters become x- and y-
coordinates. Huang and Chen [14] extended the similar al-
gorithm to a multiple region domain in estimating the time
and space varying outer boundary configurations. Huang and
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Nomenclature

f (x, y) unknown irregular surface configurations

J functional defined by Eq. (2)

J ′ gradient of functional defined by Eq. (15)

P direction of descent defined by Eq. (4)

q heat flux density

T (x, y, z) estimated temperature

T0 boundary temperature on Stop

�T (x, y, z) sensitivity function defined by Eq. (6)

Y(Sbottom) measured temperatures

Greeks

β search step size
γ conjugate coefficient
Ω computational domain
λ(x, y, z) Lagrange multiplier defined by Eq. (12)
δ(·) Dirac delta function
ω random number
ε convergence criterion
σ standard deviation of the measurement errors

Superscript

n iteration index
Shih [15] applied the technique to a shape identification prob-
lem in estimating simultaneously two interfacial configurations
in a multiple region domain.

It should be noted that the above references are all 2-D in-
verse geometry problems; the 3-D inverse geometry problems
are still very limited in the literatures. Recently Divo et al. [16]
have used a singular superposition technique and the genetic
algorithm for detecting the unknown cavity in a 3-D inverse ge-
ometry problem. In their study the shape of a 3-D cavity is only
a sphere, not an arbitrary shape, and the convergent speed for
the genetic algorithm may also be slow.

The commercial code CFD-RC [17] is available for solv-
ing fluid dynamic and heat transfer problems. The advantage of
calling CFD-RC as a subroutine in the present inverse calcula-
tion lies in that its auto mesh function enables the handling of
this moving boundary problem. The “moving boundary prob-
lem” implies actually that the boundary configurations are sub-
jected to change in each iterative process. This code can be used
to calculate many practical but difficult direct thermal prob-
lems.

If one can devise an inverse algorithm, which has the abil-
ity to communicate with the commercial code by means of data
transportation, a generalized 3-D inverse geometry problem can
thus be established. The objective of the present study is to ex-
tend the previous studies on the inverse geometry problems by
the authors [11–15] and to utilize the CFD-RC code as the sub-
routine in solving the 3-D inverse geometry problem by CGM.

The CGM is also called an iterative regularization method,
which means the regularization procedure is performed during
the iterative processes and thus the determination of optimal
regularization conditions is not needed. The conjugate gradient
method derives from the perturbation principles and transforms
the inverse geometry problem to the solution of three problems,
namely, the direct, sensitivity and the adjoint problem.

These three problems are solved by CFD-RC and the cal-
culated values are used in CGM for inverse calculations. The
bridge between CFD-RC and CGM is the INPUT/OUTPUT
files. Those files should be arranged such that their format can
be recognized by CFD-RC and CGM. A sequence of forward
steady-state heat conduction problems is solved by CFD-RC
Fig. 1. Geometry and coordinates.

in an effort to update the boundary geometry by minimizing a
residual measuring the difference between estimated and mea-
sured temperatures at the temperature extracting locations un-
der the present algorithm.

Finally the inverse solutions for this study with three dif-
ferent irregular surface geometries will be illustrated to show
the validity of using CGM in the present 3-D inverse geometry
problem.

2. The direct problem

To illustrate the methodology for developing expressions for
use in determining unknown boundary geometry in a homo-
geneous medium, we consider the following three-dimensional
steady state inverse heat conduction problem. For a domain Ω ,
the boundary conditions on four side surfaces S1, S2, S3 and
S4 are all assumed insulated, on the bottom surface Sbottom,
a constant heat flux q is taken away from the boundary by cool-
ing while the boundary condition on the top surface Stop, z =
f (x, y), maintains at an uniform temperature T0. Fig. 1 shows
the geometry and the coordinates for the three-dimensional
physical problem considered here. The mathematical formula-
tion of this steady-state heat conduction problem in dimensional
form is given by:
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∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2
= 0 in Ω (1a)

∂T

∂x
= 0 on S1 (1b)

∂T

∂x
= 0 on S2 (1c)

∂T

∂y
= 0 on S3 (1d)

∂T

∂y
= 0 on S4 (1e)

k
∂T

∂z
= q on Sbottom (1f)

T = T0 on Stop, z = f (x, y) (1g)

The above problem is solved by the following the commer-
cial package CFD-RC for the reason that it has the function of
auto mesh.

The direct problem considered here is concerned with the
determination of the medium temperature when the boundary
geometry z = f (x, y) and the boundary conditions at all bound-
aries are known.

3. The inverse geometry problem

For the inverse geometry problem, the boundary geometry
z = f (x, y) is regarded as being unknown, but everything else
in Eq. (1) is known. In addition, simulated temperature read-
ings taken by infrared scanners on the bottom surface Sbottom
are considered available. In this work no real measured temper-
atures were utilized, instead, the simulated values of measured
temperatures on Sbottom are generated by using the exact geom-
etry of the top surface in the solution of direct problem. Then
try to retrieve the geometry of the top surface by using sim-
ulated measured temperatures on Sbottom and the technique of
the CGM.

Referring to Fig. 1, let the temperature reading taken by in-
frared scanners on the bottom surface Sbottom be denoted by
Y(Sbottom) ≡ Y(xm,ym) ≡ Ym(Sbottom), m = 1 to M , where
M represents the number of measured temperature extracting
points. We note that the measured temperature Ym(Sbottom) con-
tain measurement errors. Then the shape identification problem
can be stated as follows: by utilizing the above mentioned mea-
sured temperature data Ym(Sbottom), estimate the unknown ge-
ometry of the top surface, z = f (x, y).

The solution of the present inverse geometry problem is to
be obtained in such a way that the following functional is min-
imized:

J
[
f (x, y)

] =
M∑

m=1

[
Tm(Sbottom) − Ym(Sbottom)

]2

=
∫

Sbottom

(T − Y)2δ(x − xm)δ(y − ym)dSbottom (2)

where δ(x −xm) and δ(y −ym) are the Dirac delta function and
Tm are the estimated or computed temperatures on the measured
positions (xm, ym) on Sbottom. These quantities are determined
from the solution of the direct problem given previously by us-
ing estimated boundary geometry for the exact f (x, y).

4. Conjugate gradient method for minimization

The Conjugate Gradient Method itself may not ensure the
global minimum; however, if the objective function is properly
defined and in a quadratic form, like the definition in Eq. (2),
the global minimum for this objective function is guaranteed.

The following iterative process based on the conjugate gra-
dient method [11–15] is now used for the estimation of un-
known boundary geometry f (x, y) by minimizing the func-
tional J [f (x, y)]
f n+1(x, y) = f n(x, y) − βnP n(x, y) for n = 0,1,2, . . . (3)

where βn is the search step size in going from iteration n to
iteration n + 1, and P n(x, y) is the direction of descent (i.e.
search direction) given by

P n(x, y) = J ′n(x, y) + γ nP n−1(x, y) (4)

which is a conjugation of the gradient direction J ′n(x, y) at
iteration n and the direction of descent P n−1(x, y) at iteration
n − 1. The conjugate coefficient is determined from

γ n =
∫
Stop

(J ′n)2 dStop∫
Stop

(J ′n−1)2 dStop
with γ 0 = 0 (5)

We note that when γ n = 0 for any n, in Eq. (4), the direc-
tion of descent P n(x, y) becomes the gradient direction, i.e.
the “Steepest descent” method is obtained. The convergence of
the above iterative procedure in minimizing the functional J is
guaranteed in [18].

To perform the iterations according to Eqs. (3), we need to
compute the step size βn and the gradient of the functional
J ′n(x, y). In order to develop expressions for the determination
of these two quantities, a “sensitivity problem” and an “adjoint
problem” need to be constructed as described below.

5. Sensitivity problem and search step size

The sensitivity problem is obtained from the original direct
problem defined by Eq. (1) in the following manner: It is as-
sumed that when z = f (x, y) undergoes a variation �z (or
�f (x, y)) in z direction only with both x and y fixed, T (x, y, z)

is perturbed by T + �T . Then replacing in the direct problem
f by f +�f and T by T +�T , subtracting the direct problem
from the resulting expressions and neglecting the second-order
terms, the following sensitivity problem for determining the
sensitivity function �T is obtained.

∂2�T

∂x2
+ ∂2�T

∂y2
+ ∂2�T

∂z2
= 0 in Ω (6a)

∂�T

∂x
= 0 on S1 (6b)

∂�T

∂x
= 0 on S2 (6c)

∂�T = 0 on S3 (6d)

∂y
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∂�T

∂y
= 0 on S4 (6e)

∂�T

∂z
= 0 on Sbottom (6f)

�T = �f
∂T

∂z
on Stop, z = f (x, y) (6g)

The commercial package CFD-RC is used to solve the above
sensitivity problem.

The functional J (f n+1) for iteration n + 1 is obtained by
rewriting Eq. (2) as

J (f n+1) =
∫

Sbottom

[
T (x, y, z;f n − βnP n) − Y

]2

× δ(x − xm)δ(y − ym)dSbottom (7)

where we have replaced f n+1(x, y) by the expression given by
Eq. (3). If temperature T (x, y, z;f n − βnP n) is linearized by
a Taylor expansion, Eq. (7) takes the form

J (f n+1) =
∫

Sbottom

[
T (x, y, z;f n) − βn�T (x, y, z;P n) − Y

]2

× δ(x − xm)δ(y − ym)dSbottom (8)

where T (x, y, x;f n) is the solution of the direct problem by us-
ing the estimated f n(x, y) for exact f (x, y) on the top surface
Stop. The sensitivity functions �T (x, y, x;P n) are taken as the
solutions of problem (6) at the measured positions (xm, ym) on
Sbottom by letting �f = P n. The search step size βn is de-
termined by minimizing the functional given by Eq. (8) with
respect to βn. The following expression results:

βn =
∫
Sbottom

(T − Y)�T δ(x − xm)δ(y − ym)dSbottom∫
Sbottom

(�T )2δ(x − xm)δ(y − ym)dSbottom
(9)

6. Adjoint problem and gradient equation

To obtain the adjoint problem, Eq. (1a) is multiplied by the
Lagrange multiplier (or adjoint function) λ(x, y, z) and the re-
sulting expression is integrated over the correspondent space
domain. The result is then added to the right-hand side of
Eq. (2) to yield the following expression for the functional
J [f (x, y)]:

J
[
f (x, y)

] =
∫

Sbottom

(T − Y)2δ(x − xm)δ(y − ym)dSbottom

+
L∫

x=0

L∫
y=0

f (x,y)∫
z=0

λ(x, y, z)

×
{

∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

}
dzdy dx (10)

The variation �J is obtained by perturbing f by �f and T

by �T in Eq. (10), subtracting the original equation (10) from
the resulting expression and neglecting the second-order terms.
We thus find
�J
[
f (x, y)

] =
∫

Sbottom

2[T − Y ]�T δ(x − xm)

× δ(y − ym)dSbottom

+
L∫

x=0

L∫
y=0

f (x,y)∫
z=0

λ(x, y, z)

×
{

∂2�T

∂x2
+ ∂2�T

∂y2
+ ∂2�T

∂z2

}
dzdy dx (11)

where δ(x − xm) and δ(y − ym) are the Dirac delta function
and (xm, ym), n = 1 to M , refer to the temperature extracting
points. In Eq. (11), the triple domain integral term is integrated
by parts; the boundary conditions of the sensitivity problem
given by Eqs. (6b)–(6g) are utilized and then �J is allowed
to go to zero. The vanishing of the integrands containing �T

leads to the following adjoint problem for the determination of
λ(x, y, z):

∂2λ

∂x2
+ ∂2λ

∂y2
+ ∂2λ

∂z2
= 0 in Ω (12a)

∂λ

∂x
= 0 on S1 (12b)

∂λ

∂x
= 0 on S2 (12c)

∂λ

∂y
= 0 on S3 (12d)

∂λ

∂y
= 0 on S4 (12e)

∂λ

∂z
= −2(T − Y)δ(x − xm)δ(y − ym) on Sbottom (12f)

λ = 0 on Stop, z = f (x, y) (12g)

The techniques of CFD-RC can be used to solve the above
adjoint problem.

Finally, the following integral term is left

�J =
∫

Stop

−
[
∂λ

∂z

∂T

∂z

]
z=f (x,y)

�f (x, y) dStop (13)

From definition [1], the functional increment can be pre-
sented as

�J =
∫

Stop

J ′(x, y)�f (x, y) dStop (14)

A comparison of Eqs. (13) and (14) leads to the following
expression for the gradient of functional J ′(x, y) of the func-
tional J [f (x, y)]:
J ′(x, y) = −∂λ

∂z

∂T

∂z

∣∣∣∣
z=f (x,y)

(15)

7. Stopping criterion

If the problem contains no measurement errors, the tradi-
tional check condition is specified as

J
[
f n+1(x, y)

]
< ε (16)
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where ε is a small specified number. However, the temperature
reading taken by infrared scanners may contain measurement
errors. Therefore, it is not expected that the functional equa-
tion (2) to be equal to zero at the final iteration step. Following
the experience of the authors [1,11–15], the discrepancy prin-
ciple is utilized as the stopping criterion, i.e. the temperature
residuals may be approximated by

T (Sbottom) − Y(Sbottom) ≈ σ (17)

where σ is the standard deviation of the temperature measure-
ments, which is assumed to be a constant. Substituting Eq. (17)
into Eq. (2), the following expression is obtained for ε:

ε = σ 2M (18)

The stopping criterion is given by Eq. (16) with ε determined
from Eq. (18).

8. Computational procedure

The computational procedure for the solution of this inverse
geometry problem using CGM may be summarized as follows:

Suppose f n(x, y) is available at iteration n.
Step 1. Solve the direct problem given by Eq. (1) for T (x, y, z).
Step 2. Examine the stopping criterion ε for convergence.

Continue if not satisfied.
Step 3. Solve the adjoint problem given by Eq. (12) for

λ(x, y, z).
Step 4. Compute the gradient of the functional J ′(x, y) from

Eq. (15).
Step 5. Compute the conjugate coefficient γ n and direction of

descent P n from Eqs. (5) and (4), respectively.
Step 6. Set �f (x, y) = P n(x, y), and solve the sensitivity

problem given by Eq. (6) for �T (x, y, z).
Step 7. Compute the search step size βn from Eq. (9).
Step 8. Compute the new estimation for f n+1(x, y) from

Eq. (3) and return to step 1.

9. Results and discussions

To illustrate the validity of CGM in identifying irregular
boundary configuration z = f (x, y) in a 3-D inverse geometry
problem based on the knowledge of the simulated temperature
recordings taken by infrared scanners on the bottom surface
Sbottom, we consider three specific examples where the surface
geometry on Stop, z = f (x, y), are assumed as three different
functions, the first two are the combination of sine and cosine
functions and the third one is a step function.

The objective of this article is to show the accuracy of CGM
in estimating f (x, y) with no prior information on the func-
tional form of the unknown quantities, which is the so-called
function estimation.

In order to compare the results for situations involving ran-
dom measurement errors, we assume normally distributed un-
correlated errors with zero mean and constant standard devi-
ation. The simulated inexact measurement data Y can be ex-
pressed as

Y = Ydir + ωσ (19)
(a)

(b)

Fig. 2. The (a) exact and (b) estimated surface configurations f (x, y) with σ =
0.0 and f (x, y)0 = 0.05 m in case 1.

where Ydir is the solution of the direct problem with an exact
f (x, y); σ is the standard deviation of the measurement error;
and ω is a random variable that generated by subroutine DRN-
NOR of the IMSL [19] and will be within −2.576 to 2.576 for
a 99% confidence bounds.

One of the advantages of using the conjugate gradient
method is that it does not require a very accurate initial guess
of the unknown quantities, this can be verified in the following
numerical experiments.

To discuss the effect of grid number on the calculated tem-
peratures for the direct problem, a benchmark problem with Lx

(length in x direction) = Ly (length in y direction) = 0.5 m,
Lz (length in z direction) = 0.1 m, q = −5000 W/m2 and
T0 = 200 ◦C is considered. The grid number in x, y and z di-
rections are 31 × 31 × 11, 51 × 51 × 21, 71 × 71 × 31 and
111 × 111 × 51, respectively. The case for 111 × 111 × 51 grid
system is regarded as the true solution for the benchmark prob-
lem.

The relative errors between the true and computed tempera-
tures on Sbottom for 31×31×11, 51×51×21 and 71×71×31
grid system are calculated as 6.32%, 0.98% and 0.73%, respec-
tively. It is obvious that 51 × 51 × 21 grid system is accurate
enough for the present numerical solution.

Based on the above stated grid independent test, in all the test
cases considered here we have chosen Lx = Ly = 0.5 m and
the spacing in numerical computations is taken as �x = �y =
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(a)

(b)

Fig. 3. The (a) simulated measured and (b) estimated surface temperatures on Sbottom with σ = 0.0 and f (x, y)0 = 0.05 m in case 1.
0.01 m, i.e. there are 51 grid points in both x and y direction.
In z direction, 21 grids are always chosen for computations.
The boundary condition T0 = 200 ◦C is applied on Stop. The
measurement surface is always on Sbottom, i.e. on the bottom
surface.

Three numerical experiments in estimating f (x, y) by the
inverse analysis are now presented below:
Numerical test case 1

The unknown surface configuration on Stop, z = f (x, y), is
assumed as the following form

f (x, y) = 0.08 + 0.02 sin
2πx

0.5
cos

2πy

0.5
(20)

which represents a combination for sine and cosine functions.
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(a)

(b)

Fig. 4. The estimated surface configurations with f (x, y)0 = 0.05 m in case 1
using (a) σ = 0.11 and (b) σ = 0.22.

The inverse analysis is first performed by using q = −5000
W/m2 and assuming exact measurements, i.e. σ = 0.0 and us-
ing initial guess f (x, y)0 = 0.05 m with convergent criterion
ε = 0.2.

After 26 iterations, the exact and estimated functions of
f (x, y) by using CGM are shown in Figs. 2(a) and 2(b), re-
(a)

(b)

Fig. 6. The (a) exact and (b) estimated surface configurations f (x, y) with σ =
0.0 and f (x, y)0 = 0.05 m in case 2.

spectively, while the measured and estimated surface temper-
atures on Sbottom are illustrated in Figs. 3(a) and 3(b), respec-
tively.

The average relative errors for the exact and estimated sur-
face configurations and for the measured and estimated temper-
atures are calculated ERR1 = 1.12% and ERR2 = 0.0014%,
(a) (b)

Fig. 5. The contour plots of relative error ERR1 for the estimated surface configurations in case 1 using (a) σ = 0.11 and (b) σ = 0.22.
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(a)

(b)

Fig. 7. The (a) simulated measured and (b) estimated surface temperatures on Sbottom with σ = 0.0 and f (x, y)0 = 0.05 m in case 2.
respectively, where the average relative errors ERR1 and ERR2
are defined as

ERR2 =
N∑

n=1

M∑
m=1

∣∣∣∣f (xn, ym) − f̂ (xn, ym)

f (xn, ym)

∣∣∣∣
÷ (N × M) × 100% (21a)
ERR2 =
N∑

n=1

M∑
m=1

∣∣∣∣T (xn, ym) − Y(xn, ym)

Y (xn, ym)

∣∣∣∣
÷ (N × M) × 100% (21b)

here N = 51 and M = 51 represent the total discreted number
of grid in x and y directions, respectively, and (N × M) indi-
cates the total number of the unknown parameters, while f and
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(a)

(b)

Fig. 8. The estimated surface configurations with f (x, y)0 = 0.05 m in case 2
using (a) σ = 0.07 and (b) σ = 0.14.

f̂ denote the exact and estimated values of surface configura-
tions.

It can be seen from the above figures and relative average
errors that the present inverse scheme obtained good estimation
for f (x, y) and the CPU time on Pentium IV-3 GHz PC is about
1 hour and 22 minutes.

Next, let us examine what will happen when different initial
guess is considered. The computational situations are the same
as the previous one except that the initial guess is now chosen
as f (x, y)0 = 0.15 m. Using stopping criterion ε = 0.2, after 25
iterations the inverse solutions for the estimated surface shapes
and estimated temperatures are obtained and the relative aver-
age errors ERR1 and ERR2 are calculated as ERR1 = 1.12%
and ERR2 = 0.0013%, respectively. The results are similar to
those with f (x, y)0 = 0.05 m. The CPU time (on Pentium IV-
3.00 GHz PC) used in the CGM is about 1 hour and 17 minutes.
Again, it is clear from the relative average errors that the esti-
mated f (x, y) is still very accurate when using different initial
guess for surface shapes.

Finally, let us discuss the influence of the measurement er-
rors on the inverse solutions. The largest temperature difference
between all measured temperatures is about 2 ◦C in the present
test case, therefore too large measurement error will be out
of its physical significant. For this reason the inclusion of the
measurement error will depend on the largest temperature dif-
ference on Sbottom in the error analysis examples.
(a)

(b)

Fig. 9. The (a) exact and (b) estimated surface configurations f (x, y) with σ =
0.0 and f (x, y)0 = 0.05 m in case 3.

First, the measurement error for the simulated temperatures
measured by infrared scanners on bottom surface Sbottom is
taken as σ = 0.11 (about 5% of the largest temperature differ-
ence on Sbottom). The estimations for f (x, y) can be obtained
after only 13 iterations (CPU time is about 40 minutes) and plot-
ted in Fig. 4(a). The relative average errors ERR1 and ERR2
are calculated as ERR1 = 1.61% and ERR2 = 0.0182%, re-
spectively. The measurement error for the temperatures is then
increased to σ = 0.22 (about 10% of the largest temperature
difference on Sbottom). After only 7 iterations (CPU time is
about 21 minutes) the estimated f (x, y) is obtained and illus-
trated in Fig. 4(b). ERR1 and ERR2 are calculated as 2.09%
and 0.0362%, respectively.

In order to have a better view for the relative error, ERR1,
the contour plots based on ERR1 for σ = 0.11 and σ = 0.22
are shown in Figs. 5(a) and 5(b), respectively. From Fig. 5 we
learn that the estimations along x = 0 and 0.5 m are less ac-
curate than the others, it is because that the exact shapes along
x = 0 and 0.5 m are both straight lines and it is more difficult
to reconstruct them. Based on those results it is learned that the
reliable inverse solutions can still be obtained when large mea-
surement errors are considered.

Numerical test case 2

In the second test case, f (x, y) is taken as

f (x, y) = 0.05 + 0.015 sin
2πx

cos
2πy

(22)

0.25 0.25
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(a)

(b)

Fig. 10. The (a) simulated measured and (b) estimated surface temperatures on Sbottom with σ = 0.0 and f (x, y)0 = 0.05 m in case 3.
Eq. (22) still represents a combination for sine and cosine
functions but with more fluctuations. The initial guess for this
test case is chosen as f (x, y)0 = 0.05 m.

By using q = −6000, measurement error σ = 0.0 and stop-
ping criterion ε = 1.34, after 57 iterations, the exact and esti-
mated functions of f (x, y) are shown in Figs. 6(a) and 6(b),
respectively, while the measured and estimated surface tem-
peratures on Sbottom are illustrated in Figs. 7(a) and 7(b), re-
spectively. The average relative errors are calculated ERR1 =
1.75% and ERR2 = 0.0036%, respectively.

The estimation for f (x, y) along the boundaries x = 0 and
y = 0 exist some oscillatory behaviors, but the estimated tem-
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peratures are still match very well with the measured tempera-
tures on Sbottom. It is obvious from Figs. (6) and (7) and the rel-
ative average errors that CGM can be used to obtain good esti-
mation for f (x, y) and the CPU time (on Pentium IV-3.00 GHz
PC) used in the CGM is about 2 hours and 33 minutes.

Next, error measurement will be considered in the numeri-
cal experiments. First, the measurement error for the simulated
temperatures measured by infrared scanners on the bottom sur-
face Sbottom is taken as σ = 0.07 (about 5% of the largest
temperature difference on Sbottom). After 34 iterations (CPU
time is about 1 hour and 32 minutes), the estimated f (x, y)

can be obtained and shown in Fig. 8(a). The relative average
errors ERR1 and ERR2 are calculated as ERR1 = 2.46% and
ERR2 = 0.0115%, respectively. Then, the measurement error
for the temperatures is increased to σ = 0.14 (about 10% of
the largest temperature difference on Sbottom). The estimated
f (x, y) can be obtained after only 14 iterations (CPU time is
about 39 minutes) and plotted in Fig. 8(b). ERR1 and ERR2 are
calculated as 3.28% and 0.0232%, respectively. From Figs. 8(a)
and 8(b) we concluded that the reliable inverse solutions can
still be obtained when large measurement errors are considered.

Numerical test case 3

In the third test case, a stricter test case for f (x, y) is taken
as a step function, i.e.

f (x, y) =
{0.04 + 0.02y; 0 � x < 0.1

0.02 + 0.01y; 0.1 � x < 0.4
0.05 − 0.02y; 0.4 � x � 0.5

(23)

where the initial guess for this test case is chosen as z =
f (x, y)0 = 0.02 m.

By using q = −5000, σ = 0.0 and ε = 1.71, after only 19 it-
erations, the exact and estimated functions of f (x, y) are shown
in Figs. 9(a) and 9(b), respectively. The measured and estimated
surface temperatures on Sbottom are illustrated in Figs. 10(a)
and 10(b), respectively. The average relative errors are calcu-
lated ERR1 = 4.98% and ERR2 = 0.0042%, respectively.

The estimated surface shape is not so accurate near the dis-
continuity region, but the estimated temperatures are still match
very well with the measured temperatures on Sbottom. Based on
Figs. 9 and 10 it is concluded that CGM can be used to ob-
tain good estimation for f (x, y) and the CPU time (on Pentium
IV-3.00 GHz PC) used in the CGM is about 48 minutes.

Next, measurement errors will be considered in the nu-
merical experiments. First the measurement error is taken as
σ = 0.15 (about 5% of the largest temperature difference on
Sbottom). After only 6 iterations (CPU time is about 14 minutes),
the estimated f (x, y) can be obtained and shown in Fig. 11(a).
The relative average errors ERR1 and ERR2 are calculated as
ERR1 = 7.03% and ERR2 = 0.0236%, respectively. The mea-
surement error for the temperatures is then increased to σ = 0.3
(about 10% of the largest temperature difference on Sbottom).
The estimated f (x, y) can be obtained after only 3 iterations
(CPU time is about 8 minutes) and plotted in Fig. 11(b). ERR1
and ERR2 are calculated as 7.81% and 0.0465%, respectively.
From Figs. 11(a) and 11(b) it is concluded that the reliable in-
verse solutions can still be obtained when large measurement
errors are considered.
(a)

(b)

Fig. 11. The estimated surface configurations with f (x, y)0 = 0.05 m in case 3
using (a) σ = 0.15 and (b) σ = 0.3.

From the above numerical test cases 1, 2 and 3, we con-
cluded that the advantages of the CGM in estimating unknown
surface configurations lie in that (i) it does not require a very
accurate initial guess and (ii) the rate of convergence is fast.

10. Conclusions

The Conjugate Gradient Method (CGM) with commercial
code CFD-RC are successfully applied for the solution of the
three-dimensional inverse geometry problem in determining the
unknown irregular surface configuration by utilizing surface
temperature measurements. Several test cases involving differ-
ent initial guess, functional forms of f (x, y) and measurement
errors were considered. The results show that CGM does not
require an accurate initial guess of the unknown quantities and
needs very few numbers of iterations in performing the inverse
calculations on Pentium IV-30 GHz PC.
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